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Abstract. In this paper an iterative method for the computation of stationary gravity-
wave solutions is investigated, using a novel formulation of the free-surface (FS)
boundary-value problem. This method requires the solution of a sequence of station-
ary Reynolds-Averaged Navier-Stokes subproblems employing the so-called quasi free-
surface condition. The numerical performance of this new approach is investigated for
two test cases. The first test case involves the computation of the 3D gravity-wave
pattern due to a pressure perturbation imposed on a uniform flow. The second is the
computation of the gravity-wave pattern generated by a realistic ship-hull form, known
as Series 60. Results of the ship-hull case are compared with experimental data.

1 Introduction

In fluid dynamics a large class of problems exists in which a free surface is present.
The inherent difficulty of this class of problems is the interdependence of the free
surface (FS) location and the unknowns of the bulk-flow problem. Examples of
FS flow problems in the physical sciences and engineering are vast. Here we
consider the stationary gravity waves generated by ships nioving with constant
speed. Although much of this wave system is adequately described by inviscid
theory, certain areas in the ship-hydrodynamics problem, such as the boundary
layer and the wake, require a viscous description. Therefore, present-day devel-
opments are primarily directed towards computing stationary FS Navier-Stokes
flow problems. Current numerical methods for solving the stationary viscous FS
flow problem often employ a time-dependent formulation and integrate until a
steady state is reached. This approach typically displays two defects, viz., high
computational costs due to persistent transient behaviour of the gravity waves
and substantial spatial damping of these waves. To reduce the computational
effort of solving FS Navier-Stokes flow an efficient iterative method, employing
a novel formulation of the FS flow problem was introduced in [1]. This method
employs the so-called quasi free-surface condition (QFSC). The method shows
mesh-independent asymptotic convergence rates for a 2D test case.

The emphasis of this paper lies on the extension to 3D of this method and on
the investigation of its convergence behaviour. The numerical method is applied
to two 3D test cases. The first test case concerns the computation of the wave
system due to a pressure perturbation imposed on the FS of a uniform flow. In
the second test case the wave pattern is computed around the Series 60 ship-

hull form, a benchmark problem for FS methods in the ship-hydrodynamics
conumunity.
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2 Mathematical Model

In this section a short description is given of the mathematical model which
is involved and, secondly, a short summary of the free surface conditions from
which the QFSC can be derived.

Let 2(z) C R? denote the physical domain which is occupied by the fluid
and d2(x) = I'vs U [y the boundary of 2(x), where I'rs denotes the FS and
Iy the remaining (fixed) part of the boundary. The dynamics of the viscous,
incompressible flow subjected to a constant gravitational force is described by
the Navier-Stokes equations, which read

V-uu' +Veo—-V-r(u)=0, Vae, (1a)
Vou=0, Vzen, (1b)

where 7(u) is the viscous stress tensor and Vio(z) = Vp(x)+Fr~2e. the gradient
of the hydrodynamic pressure containing the Froude number Fr = U, //g? with
g the acceleration of gravity and ¢ the reference length.

The dynamics of the free surface boundary, I'rs, is governed by the following
conditions. Assuming that the F'S can be described as a single-valued function,
denoted by I'vs = {(x) : = = ((2.y)}, the kinematic condition can be written as

u-V((z,y) =u-e,, V€ lps, (2)

where e, is the unit vector directed in the opposite direction of the gravita-
tional force. The FS has to adhere to the three dynamic conditions imposed by
the assumption of vanishing interfacial stresses. The dynamic condition in the

direction normal to the FS reads
p(x) — 2Re™ " — = prs(x), 3
e L prs (), (3)
whereas the conditions in the two tangential directions are
t YT on=0, a=12 (4)

Here ppg(z) is the specified pressure distribution along the FS. In our first
and second test case, pps(x) # 0 and pps(x) = 0, respectively. For the practical
application envisaged here the viscous contribution in (3) will be neglected. Also,
the effects of surface tension can be safely ignored.

Many modern FS-iteration methods apply a formulation in which they solve
(1a), (1b), in time-dependent form, subjected to the normal dynamic condition
applied at an approximate location of the FS, followed by an update of the FS
using the kinematic condition in time-dependent form. This approach is disad-
vantageous because it decouples the two FS conditions. It is the combination of
the kinematic and (normal) dynamic condition which is responsible for wave-like
solutions. Therefore it was proposed in [1] to combine these conditions resulting
in the quasi free-surface condition (QFSC)

P’y -V —u-e. =Fr’u- Vpps(x), Yz € Iys. ()

Note the nonlinearity of the boundary condition.



102 Mervyn R. Lewis et al.
3 Computational Method

It has been shown that the time-integration method to solve the steady-state
FS flow problem is computationally inefficient. This is due to the fact that the
attenuation of the surface-gravity waves behaves like Ot1=9/2) in R4, see e.g.
[1.2]. To circumvent this slow transient behaviour we adopt an iterative method
for the stationary formulation of the FS fow problem. This iterative method
requires the solution of a number of stationary Navier-Stokes subproblems em-
ploying the QFSC. The solution of the FS flow problem can be found by iterating
the following two steps:

1. For a given boundary Irs, solve (u(x),p(z)) from (1a), (I1b) with on I'rg
the boundary conditions (4), (5) and on Iy other appropriate boundary
conditions.

If |p — prs| is still larger than a chosen small tolerance (assume that at
convergence p = prs), then do step 2, else stop.

2. Use the solution (u(z),o(z)) of step 1 to obtain a (better) approximation
of I'rs according to

{(2. 9.2 = B (o() — prs(x)) : (x,y.2) € Tps}
next return to step 1.

The nonlinear stationary Navier-Stokes subproblem is discretized by replac-
ing the differential operators by second and third-order finite-difference schemes
and next solved by Newton’s method. The resulting linear system of algebraic
equations is solved using a space-marching strategy whereby the marching is
performed in the main How direction. As a result a number of smaller systens
has to be solved. which is done by preconditioned GMRES. More details on this
solution procedure can be found in [3].

4 Numerical Results

4.1 Pressure Perturbation

The first test case considers the computation of the gravity-wave pattern due to

a pressure perturbation imposed on a uniform flow. The perturbation has the
Gaussian distribution

prs(a.y) = Pe=®" 2 = (= 20)* + (y — 0)?, V(r,y) € I'vs,  (6)

where the parameter values P = 0.05, o = —4 and (zo,y0) = (0,0) correspond
to the values set in [4]. The Froude number is Fr = 0.6 based on unit length.
The solutions are computed on a mesh containing 161 x 41 x 41 grid points in
the r.y and 2 direction, respectively, with = = 0 as initial estimate for the FS.
The correction to the FS which results from the solution of the first Navier-
Stokes subproblem is shown in Fig. 1. The convergence behaviour of the FS
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Fig.1. FS for pressure-perturbation problem, after solving first Navier-Stokes sub-
problem

#FES it

Fig. 2. FS pressure defect measured in || - || (), || - {1 (3) and || - |2(A)

iteration process, described in the previous section, is shown in Fig. 2. Corre-
spondence of the computed solution with that from [4] is good although small
differences in amplitude and wave length are present. Increasing the amplitude
of the perturbation, entering the range of the mildly nonlinear wave systems,
shows a reduction of the convergence rate. Computing highly nonlinear waves
is not yet possible with the FS iteration method due to robustuess problems of
the Navier-Stokes subproblem solver.
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4.2 Realistic Ship-Hull Form

The computational domain for this test case contains 321 x 121 x 41 points.
Fr and Re are set at 0.316 and 10°, respectively, both based on the length of
the ship hull. For the initial I+s we take z = 0. The wave pattern of the first
Navier-Stokes subproblem, obtained after 255 iterations, is shown in Fig. 3. A
comparison of this pattern with the experimental data from [5] is given in Fig. 4.
For this test case no FS updates were computed yet.
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Fig. 3. Wave pattern Series 60 ship hull at Fr = 0.316 after solving first Navier-Stokes
subproblem. The flow enters the domain at = —1 with speed Uy. The hull is located
at -0.5 <r <05
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Fig. 4 Comparison of computed longitudinal wave cuts ( ) with experimental results
-, Series 60 hull at Fr = 0.316 and Re = 10°. Left graph : £ = 0.0755, right graph
14 =0.2067. £ = 0 corresponds to the ship’s plane of symmetry
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5 Conclusions

The proposed FS iteration method, employing the QFSC, shows very fast con-
vergence in the case of the pressure perturbations for linear to mildly nonlinear
wave systems. For both the pressure-perturbation problem and the ship-hull
problem, the solution of the first Navier-Stokes subproblem already reveals a
large portion of the final wave system. The present method does not suffer from
the slow transient effects encountered in time-dependent formulations. So, based
on the results of the two test cases considered here, we can conclude that the
new formulation of the FS flow problem possesses the proper 3D wave physics
and shows very fast convergence.
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